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ABSTRACT

Maxwell's equations for linear media are reformulated through

linear operator and generalized transform techniques into an equivalent

matric integral equation. An exr " ' ,it formal solution to the equation

is obtained recursively, providing sequence of operations to be

applied to the electrical parameters of the medium to yield the charac-

teristic existence conditions, the set of normal modes, and the electro-

magnetic fields in response to given sources. The results are applicable

to time-invariant, linear media which may be inhomogeneous, anisotropic,

nonuniform, dissipative, dispersive, with any source distribution.
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1. fITRODUCTION

Electromagnetic phenomena are completely described mathemati-

cally by Maxwell's equations. The fundamental problem of electromag-

netic theory is to transform the implicit description embodied in the

equations into explicit formulations of these phenomena through some

procedure for solving the equations. It is a widely recognized truism

that Maxwell's equations are amenable to solution in only a few cases

possessing rather special simplifying features. A less restricted

type of problem is usually solved, if at all, by appeal to methods

often specifically designed for that particular problem. There remains

a wide class of problems that resist analysis. A general method of

attacking such problems is developed in this work.

In typical problems that do yield to standard analysis, the

geometry possesses considerable symmetry, the medium consists of only

a few homogeneous regions, the coordinate system appropriate to the

structure of the system is one of the few in which the wave equation is

separable, and the-boundaries are of such nature and shape that it

becomes feasible to attempt a straightforward solution to Maxwell's

equations. The procedure is then to write these equations and the

associated boundary conditions for each region of the space and to solve

each such set of partial differential equations by separation of vari-

ables. This introduces a number of physically meaningful separation

constants and arbitrary coefficients. The individual solutions must

then be made to fit the boundary conditionsp particularly those arising

at the interfaces between regions of differing electrical properties.
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This produces an auxiiiary set of equations, no longer differential but

merely algebraic and transcendental, which, beside determining the arbi-

trary coefficients, provides a relation among the separation constants.

This characteristic relation, which may be a dispersion relation for a

propagation problem or a resonance condition for a cavity, is often

more illuminating and useful than the explicit expressions for the field

components themselves.

The class of problems for which solutions in closed form are

obtainable in this way is quite small. If the problem is not sufficiently

simple to permit the above direct attack, recourse is often had to some

form of perturbation approach. A similar but simpler problem is first

solved exactly and the set of normal modes so obtained is used as a

basis for representing the solution to the perturbed case as a superposi-

tion of modes of the simple case. The extent to which each normal mode

contributes to the expansion remains to be determined through the use of

orthogonality properties enjoyed by these modes by virtue of the symmetry

of the unperturbed configuration. Green's functions, the use of which

greatly extends the class of problems solvable by these methods, are

usually found in the same way.

The mathematical elegance associated with the closed forms of

solution and of the expressions in terms of more or less wl.-huown and

well-tabulated functions often turns out to be an illusory advantage of

the above methods of solution. The characteristic equations, which

provide in algebraic form implicit information about physical effects

such as dispersion, scattering, or resonance, may require exhaustive

studies of the mathematical properties of the constituent functions, as

is also the case when the distribution and flow of electromagnetic
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energy is to be computed from the field components. These tasks, though

they are facilitated by a host of recursion and orthogonality properties

possessed by these functions, must often be relegated to automatic

computers, which must in turn rely upon the power series expansions of

the elementary functions involved.

Abstracting the significant features of these general and

powerful methods of solution, the following observations may be made.

Firstly, the linearity of the equations underlies the methods, heavy

reliance being placed upon the superposition principle. Secondly, the

search for closed forms of solutions may be self-defeating in that

their complexity may inhibit their interpretation and application.

Thirdly, the recursive, reciprocal, and orthogonality properties of the

solutions so obtained are actually properties of the normal modes asso-

ciated with a given configuration of materials in the medium, not just

of the various elementary functions involved, which are after all

defined as solutions of the separated wave equations. Fourthly, the

algebraic characteristic equations effectively supplant the original

differential equations, are equivalent to the Maxwell equations spe-

cialized to the particular medium, and contain essentially the same

physical information. Finally, these characteristic equations are

entirely determined by the electrical constitution of the medium and

should be obtainable without reference to the associated electromagnetic

* fields.

These principles are the foundation for the method of solution

to be developed. Primarily, the goal is to reformulate the contents of

Maxwell's equations so as to lead from a description of the spatial

I* distribution of matter in the medium directly to a single characteristic



equation which prescribes the conditions for the existence of a mode.

Secondarily, a formulation is sought which will yield the complete set

of normal modes for any linear medium. The form in which the results

are to be expressed is to be left arbitrary, the choice to be made in

advance on the basis of convenience and practicality.

In view of the nondifferential. nature of the characteristic

equations whose content is equivalent to that of the original equations,

the present approach seeks to eliminate the differential character of

the equations at the outset. This can be accomplished by means of a

transformation from coordinate space to some new domain in which differ-

entiation is replaced by other operations which also absorb the asso-

ciated boundary conditions. Full advantage is taken of the linearity

of the problem, in assuming representations of unknown functions as

general suamations, in expressing the response to several excitations

as the superposition of individual responses, and as the essence of the

reformulation in terms of linear operator techniques from which general

properties of electromagnetic waves may be deduced.

A guiding principle in the reformulation of Maxwell's equations

is that no information which could be extracted from the original equa-

tions be rendered unobtainable from the new machinery. This requires

that all information contained in a description of the electrical pro-

perties of the constituents of the medium be retained intact throug the

* various transformations, operations, and manipulations to be prescribed.

In effect, there will be presented an alternate set of mathematical

equations to that of Maxwell through which the electromagnetics problem

of which they are a model may be solved. It is claimed that the new

set of equations may profitably and without lose be considered a an



alternate starting point for the investigation of a large class of

problems in electromagnetic theory.

Beyond that, it will be shown that the new fornulation is

subject to a systematic process for extracting the complete solution to

the problem. Thus, a unified, systematic, formal solution to Maxwellts

equations for linear media will be presented. The solution will, of

course, be only formal, for the machinery developed must await an input

in the form of a precise description of the medium for which the solu-

tion is desired before it can yield the dispersion relation or other

existence conditions, as well as the normal modes themselves, as the

output.

The resolution process to be developed may become exceedingly

cumbersome in many cases, as a host of quadratures may be called for.

This will be a manifestation of the complex nature of the problems to

be attacked and of the generality of the method. Automatic computers

of a high degree of sophist.'cation may well be required to render the

process an efficient one. However, an added feature of the method is

that the complexity of the calculations will be to some extent under

the control of the user.

No claim Is made to adherence to strict mathematical rigor in

what follows. The arguments presented are intended to demonstrate the

plausibility of the results. Historical precedents for various methods

to be employed will be indicated as the appropriate stages are reached.

A computationally trivial illustration of the theory will be given which

is, however, sufficiently general to be of interest. The example will

be further specialized to a specific medium of the Srrotropic type in

order to illustrate the-nature of the computations required. Finally,
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k possible refinements of the theory will be indicated, with suggestions

for improving and extending the validity,, facility, applicability, and

utility of this refoulatinn of M~axel is equations.



2. SCOPE OF PROBLEM

The problem to be attacked herein is that of determining the

characteristics of the electromagnetic fields which may exist in a given

linear medium in response to known sources. To be more precise, the

restrictions on the medium are that there be a definite, linear, time-

invariant relation among the field intensity, flux density, and current

density vectors at each point in space. These conditions are sufficient-

ly weak to permit consideration of a medium which is nonuniform, inhomo-

geneous, anisotropic, lossy, with or without sources. It is required

merely that the region be describable electrically by giving the three

tensor fields of capacitivity, permeability, and conductivity at every

point. The problem is to extract fram this data the characteristics of

the macroscopic electromagnetic fields which may be excited in the region

of interest by sources within or without it.

The time-invariance imposed upon the medium permits a consid-

erable simplification of the problem in that a harmonic, steady-state

analysis will suffice, with little loss of generality. In addition,

this condition permits the combination of two of the three tensor fields,

the capacitivity and conductivity, into a single permittIty tensor

field. Thus, an arbitrary geometrical configuration of lossy dielectric

and permeable materials with any physical, even discontinuous, variation

of electrical properties is describable by two dyadic functions of posi-

tion and frequency. The condition that the relation between the field

intensities and flux densities be an unambiguous one imposes one final

restriction upon the systems to be considered. It is required that the



constitutive dyadics, both the permittivity and the permeability, have

nonzero eigenvalues.

In a system satisfying the conditions outlined above, all the

relevant electrical information concerning the system will be contained

in the two constitutive tensor fields. They alone are sufficient to

prescribe the form of the normal modes of the medium. If the sources,

both the electric and magnetic current densities, be specified as well,

the two dyadics will determine the actual electromagnetic field config-

uration everywhere in space. It is proposed to prescribe a set of

operations for transforming the information contained in the two con-

stitutive dyadic functions into information about the electromagnetic

fields which will exist in the given medium.

Under the stipulated conditions, the macroscopic electromag-

netic fields and source currents will be complex vector functions of

position, time-hanmonic at the radian frequency W,, and describable by

three-component vector functions in some arbitrarily chosen coordinate

system. The electrical constitution of the medium is specified by three

tensor fields: the relative capacitivity, /((r), the relative permea-

bility, p(r), and the conductivity, 0(r), where r represents the posi-

tion vector. By virtue of the nonuniformity and inhomogeneity of the

medium, these tensors are functions of position which may have discon-

tinuities, for example at the interface between a dielectric and free

spae. If the medium is isotropic, the tensors will reduce to scalars.

In order to exhibit Maxwell's equations explicitly, the

following definitions will be used. They are appropriate for the

rational inks system of units.



Permeability of free space:

Capacitivity of free space:

2Speed of light in vacuo: c c 06 9

Intrinsic impedance in vacuo: 11 - e

Wave nmber in vacuo: k k -/

2Imaginary unit: .j--

The permittivity tensor field is a combination of the relative capaci-

tivity and conductivity tensors:

e(r) K (r) -J(TIk)a(r) (2.1)

The permittivity and permeability dyadics, e(r) and P(r),' have been

assumed to be nonsingular.

For convenience, the electromagnetic field quantities will be

expressed in the following form, wherein E(r), M(r), C (r), and C (r)e

are complex, vector functions of position and, implicitly, of the wave

number.

Electric field E(r)ejw"t (2.2)

Magnetic field (J/TI)M(r)e3""t (2.3)

Electric current density (k/jTl)e(r)C e W~e jt (2.4i)

Magnetic current density kV.(r)Cm(r)ej~"' (2.5)

In terms of these quantities, Maxwell'. equations take the

form

curliE - k IM -k pCm (2.6)

curl M = k 6E -keCC (2.7)

These equations are to be satisfied at every point of the space. Bound-

arIodtos te hnter~aiyo h ouinwdntb
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specified since they have been incorporated in the spatial variation of

the constitutive tensors, 4(r) and i(r).

I



3. OP!RATOR FOMWLATION

Maxwell's equations are a pair of coupled vector partial dif-

ferential equations with variable tensor coefficients. For the purpose

of exhibiting a general solution to these equations, it is convenient

to reformulate them as a single operator equation. This eclipses the

multiple and coupled character of the equations and permits considera-

tion of Maxwell's equations as an abstract relation between the sources

and the resultant fields. The formulation will be that of an abstract

operator acting upon an abstract quantity representing the response to

transform it into one that represents the excitation. Ultimately, this

will facilitate the concretization of an abstract solution to this

general problem.

Operator methods are a well-known and potent tool in quantum

mechanics, but less common in electromagnetic theory. As those of a

linear algebra, such methods have an intrinsic value in educing certain

invariant properties of the solutions to operator equations, such as

reciprocity' or the reality of the eigenvalues. As such, these operator

methods have been explored by Bresler, Marcuvitz, and others 1 8 for

their applicability to electromagnetic theory problems. Herein, these

aspects of the operator calculus will not be pursued; it will be intro-

duced mainly to facilitate the formulation of an abstract, formal solu-

tion to Maxwell's equations.

From the operator point of view, Maxwell's equations prescribe

a set of operations to be performed upon the electromagnetic field and

source vectors, the results of which, when equated, express the pbsical

| I I I I I w w ! ! ! ! !
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interrelation among the fields. As the fields are three-vectors, the

operators acting upon them should be, apart from scalar multipliers,

three-dyadics. The permittivity and permeability tensors are such dyad-

ice; when applied to the field intensity vectors, they produce the flux

density vectors. Similarly, insofar as it produces a new vector field

from a given one, the curl operation should be expressible as a dyadic

operator.

This is indeed possible, in any particular coordinate system.

Thus, in a rectangular coordinate system, (x,y,z), the three-dyadlc

representation of the curl operator is

.0

curl -0 a~~ ~lo -

In a cylindrcal, (p,,z), or spherical, (r,Q,i), coordinte system,

similar dyadic representations are

Cylindrical-

o - .

curl=, = 0 . - ( .2)
1 0

In a cyidrcl (pOzo peiacodnt ytm

~ **~Pp 0

i,

|I I I I
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14 Spherical:

1 _0 - rsinQO rsin@ sin

curl - 1 r (3.3)r sin 97 r

r 0

The curl operator may thus be thought of as an abstract dyadic operator

which may be given an explicit expression in any coordinate system.

There may now be introduced two immittance operators as combi-

nations of the above operators, obtained formally by the rules of matrix

inversion and multiplication. The impedance operator is a three-dyadic

defined as

imp - (k)Y curl (3.4)

and the admittance operator is

adm - (kg)' curl (3.5)

The two field intensity vectors may be combined into a single,

abstract, six-component field vector, S(r), and the two excitation vec-

tors into a source six-vector, C(r), whose structures are exhibited in

the following partitioned column vectors.

rE(r)11
M(r) (r)

The Maxwell operator is an abstract six-dyadic operator which

will operate upon such six-vectors. Its structure is given by the

followin partitioned matrix.
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* -adm

Here, I represents the unit three-dyadic.

In terms of the above abstract quantities, Maxwell's equations

become the single operator equation

maxl S(r) - C(r) (3.8)

The six-dyadic, differential operator, maxl, incorporates the physical

interaction among the electromagnetic fields as well as the electrical

properties of the medium.

In abstract terms, the solution to the problem requires the

determination of the operator inverse to maxl, that is, that operator

or process which, when applied to the source, C(r), will yield the fields,

S(r).

I I I I I IIII
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. RANSFORM FORMULATION

The operator form of Maxwell's equations, Eq. (3.8), involves

a differential operator acting upon the unknown function. A direct

integration of this differential equation, say by substitution of trial

functions, is not feasible since the solution cannot be expected to be

expressible in closed form in terms of known, tabulated, elementary

functions. Realization of this raises the question of just what will

constitute a solution to the problem; that is, how may the six-compo-

nent vector function of position, S(r), which solves the equation be

exhibited?

This question of the presentation of the solution may be re-

solved by choosing some convenient basis of representation for the

function to be described, much as a coordinate system is chosen for

the mensuration of the space. The basis will consist of a set of func-

tions with the property of completeness, at least with respect to the

class of functions which are sufficiently regular to be possible solu-

tions to the physical problem here considered. The unknown solution

will then be expressed as an expansion in this complete set. After the

arbitrary complete set has been selected, the problem remaining is that

of determining the generalized Fourier coefficients of the expansion.

By the above procedure, the problem will have been transformed

from the solving of a differential operator equation in position space

to the solving of a corresponding equation in the space of the Fourier

coefficients. The spatial variables will have been eliminated, just as

the Laplace transform typically eliminates the time variable from an

" "I I I I I II I I- I -l, , -,,
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Ii equation by transforming to the frequency domain. Most important, the

differential operator in physical space will have been replaced by one

of an algebraic or integral nature in transform space.

In electromagnetic theory, a form of the process contemplated

here was developed by Schelkunoff 9 to produce the generalized telegra-

phist's equations. In a typical problem of propagation in a nonuniform

vaveguide, expansion functions are chosen from the solution of a related,

simpler problem, say that of a limiting case of the actual one. The

resulting transformation eliminates the transverse variables, so that a

set of coupled ordinary differential equations in only the axial variable

is obtained for the coefficients of the expansion. These telegraphist's

equations are of the nature of transmission line equations and the cou-

pling coefficients provide much information about the propagation of

modes in the nonuniform system. This process is somewhat generalized

herein, where the expansion functions remain arbitrary, all the spatial

variables are eliminated, the differential character of the equation is

entirely suppressed, and vector and dyadic functions are treated. The

procedure will yield an equation for the transform variables to which a

definite set of operations may be applied to extract the complete

solution.

The translation from the original to the transform space must

be invertible; that is, a solution obtained in transform space should be

subject to being carried back to the original domain, if desired. There

will then be no loss of information attendant to the consideration of

the probl.em in the transform space.i The original space is indexed by the position vector r, vlch
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may be considered a composite index comprising the three coordinates of

the space. In the transformation, each coordinate or spatial index Is

eliminated at the cost of introducing a corresponding transform index,

just as the frequency variable supplants the time variable when a Fourier

transform is applied to a problem in the time domain. The transform

space will thus be indexed by a composite index, s. The transformation

of a function of position, g(r), is achieved by multiplying it by the

transformer t(s,r) and integrating throughout the space. This elimi-

nates the position index r and leaves the transform G(s), a function

of the composite index s. The inverse transformation is achieved by

m ltiplying the transform G(s) by the transformer T(r,s) and: inte-

grating or summing, as appropriate, over each variable of the composite

index, s, leaving the function of position, g(r).

Such multiple integrations and summations as are involved in

the above processes will here be denoted by the generic summation symbol

4. To be precise, this symbol will dictate that the expression which

follows it be integrated or summed over the complete range of the vari-

ables which are contained in the repeated, dummy, composite indices

appearing in the summand. Summation will be implied for the discrete

variables in the composite index and integration, possibly with appro-

priate weigbt functions, for the continuous variables. Thus, the above

transform pair will be written

*G(s) - $ t(s,r)g(r) g(r) - * T(rs)G(s) (4.1)

The unit function for such summations will be denoted by l(us). It has

the property expressed by

0(u) - $l(u,s)G(s) (4.2)



VL 18

This idemfactor thus comprises a Dirac delta function for each variable

in the composite index whose range is a continuum, a Kronecker delta

for each discrete variable, and a unit dyadic, as required.

As an illustration of the use of this compact notation, con-

sider a function of position, g(r), in a cylindrical coordinate system

to which it is desired to apply a Fourier-Bessel transform. In this

case, the composite index r represents (p,d,z) and the transformation

will lead to a space indexed by s - (q,n,1). The transformer t(sr)

and its inverse T(r,s) are given by

t(s,r) - t(qn,p;p,b,z) - eJ(- +z) Jn(qp) (4.3)

T(r,s) - T(p,O,z;q,n,p) - (2A)" e (qp) (.4)

The ranges of p and q are 0 to , with weight functions p and q, respec-

tively; the range of 0 is 0 to 2n, that of n is all positive and negative

integers; the ranges of z and f are - to .. Accordingly, Bqs. (4.1)

would in this case be interpreted as
2v

G(qnt) - dz Idm pdp t(qn,P;pO,z)g(p,O,z)

(4.5)

g(P'OZ)- Jfdo EO, jqdq T(p,O,z;q,n,()G(q,n,j3)

SFor the problem at hand, the spatial functions and their trans-

forms are six-vectors. Correspondingly, the transformers will be six-

dyadics. In fact, let there be chosen some convenient dyadic complete

k orthonormal set c(r,s) with its inverse d(s,r). With no loss of

generality, these six-dyadics may be taken to be diagonal. The complete-

ness -property is expressed by
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*c(r.s)d(sp) - (rp)

and that of orthonormality by

$ d(u,r)c(r,s) - l(u,s)

The transformation law for a column vector v(r) and the inver-

sion of its transform V(s) will then be

v(r) = $ c(r,s)V(s) V(s) = $ d(s,r)v(r) (4.8)

The transformation of a row vector w(r) is to be performed in the con-

verse manner.

w(r) - $ W(s)d(s,r) W(s) - w(r)c(rs) (4.9)

The properties expressed by Eqs. (4.6) and (4.7) then guarantee that the
form of the scalar inner product of two vectors will be preserved by .the

transformation.

* w(r)v(r) = $ W(s)V(s) (4.10)

Another consequence of these transformation laws is that a dyadic kernel

operator equation in position space such as x(r) = $ A(r,p)v(p) will be

translated into an equation of similar form in transform space, X(u) -

$ B(u,s)V(s), provided that the transformation law for the dyadic oper-

ator A(r,p) is taken as

B(u,s) - $ d(ur)A(r,p)c(p,s) (4.11)

It follows that any linear dyadic operator in position space

whose nature is such that there could be constructed for it a represen-

tation as a kernel of an integral operator will have a representation in

transform space in the form of a dyadic function of two composite trans-

form indices. This transform of the operator may be obtained by allowing

the posltion-space operator to act upon c(rs), .tpremltiplyn1g the
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result by the dyadic d(u,r) and integrating throughout the space, as

in Eq. (4.11). The actual kernel representation of the operator in

coordinate space need not be found explicitly; indeed, that kernel might

be highly singular, possibly involving delta functions and their deriva-

tives. This situation is analogous to that which obtains in the quantum

mechanical representation of dynamical variables as operators. I 0 -1 3

The hypothesis is now made that the abstract maxl operator of

Eq. (3.8) is such an operator. The rigorous justification of this hy-

pothesis will be held in abeyance while its consequences are explored.

Proceeding now with the transformation of the operator form of

Maxwell's equations, let F(s) and Q(s) be the transforms of the vectors

S(r) and C(r), respectively. That is,

S(r) - $ c(r,s)F(s) F(s) = $ d(s,r)S(r) (4.12)

C(r) - $ c(rs)Q(s) Q(s) = $ d(s,r)C(r) (4.13)

In accordance with the preceding discussion, let the transform of the

maxl operator be D(u,s).

D(u,s) - * d(u,r) max c(r,s) (4.14)

Upon premultiplying both sides of Eq. (3.8) by d(u,r), substituting the

expansion for S(r), and integrating, Maxwell's equations become the

operator transform equation

$ D(u,s)F(s) - Q(u) (1.i )
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5. SIMIFICANCE OF REFORWJATION

The equation obtained here for the transforms of the electro-

magnetic fields, Bq. (1.1i),

D(u,s)F(s) - Q(u)

merits closer examination. Despite the notational disguise, it is

entirely equivalent to the original Maxwell equations.

In this equation, F(s) is an unknown six-vector, the transform

of the desired field vector S(r). The six-vector Q(s) is the known

transform of the given source vector C(r). D(u,s) is a six-dyadic

kernel, a function of two composite indices of the transform space and,

implicitly, of the wave number, k, as a parameter. It incorporates in

an intimate combination

1) the physical law of interaction of electromagnetic fields, namely

that, in the steady state, one field determines the spatial rate

of change of the other, as expressed by the curl operation;

2) the electrical constitution of the medium filling the space, as

described by the tensor capacitivity, permeability, and conductiv-

ity at every point;

3) the geometrical configuration of the material bodies whose arrange-

ment in space is incorporated in the spetial variation, particularly

the discontinuities, of the constitutive tensors;

J&) the boundary conditions which would have to be appended to the orig-

inal partial differential equations to prescribe the field disconti-

nuities at interfaces between regions of different electrical

properties;
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5) the basis of representation selected to express the spatial varia-

tion of the fields, as embodied in the dyadic transformers c(rs)

and d(s,r).

The sv mation operation gives the equation the character of a generalized

integral equation of the first kind, with Q(s) as the forcing function,

F(s) as the unknown function, and D(u,s) as the kernel.

A review of the procedure involved in obtaining the dyadic ker-

nel D(u, s) will show that no information about the electromagnetic system

has been lost in the transition from the original form of Maxwell's equa-

tions to the present formulation. An appropriate coordinate system for

the space having been chosen, the medium is first described mathematically

by giving the two constitutive dyadics, e(r) and p(r), at each point in

space. These two constitutive matrices are inverted and then premulti-

plied into the dyadic representative of the curl operator to form the

immittance operators imp and adm, as in Eqs. (3.) and (3.5). These

three-dyadic operators are arranged in a six-dyadic as in Eq. (3.7) to

create the maxl operator for the medium in question. A diagonal dyadic

complete set c(r,s) and its inverse d(s,r) are selected as a basis of

representation. The maxl operator is applied to c(rs) and, finally,

the integrations prescribed in Eq. (4.14) are performed to produce the

kernel D(us). As each of these steps, in particular the transformation,

is reversible, it is clear that all the pertinent information about the

system has been retained in the process of obtaining D(u,s). Tbe problem,

may hence be solved Just as thoroughly by an attack on the new equation,

Eq. (4.15), as on the original Maxwell equations.

The most important characteristic of D(us) as a replacement

for the maxl operator is the absence of spatial coordinates and of

I ,



23

differential operators. A major advantage of the reformulation of

Maxwell's equations lies in that as expressed in this integral equation

form, approximation methods, variational techniques, perturbation

approaches, and abstract operator analyses may be applied to the problem

more easily than in the original formulation as coupled, vector, partial

differential, variable coefficient equations. In fact, a complete, exact

solution to the transformed equation may be extracted through the appli-

cation of a definite set of operations to the known kernel D(u,s) and

source Q(s). Any solution, however obtained, for F(s) constitutes the.

expansion coefficients for the field vector S(r) in the selected basis

of representation c(r,s). The solution F(s) may be transformed back to

the desired S(r), in accordance with Eq. (4.12), to obtain both the

electric and magnetic fields at every point in space.

This last step of transformation back to physical space will

often be superfluous as much information may be gleaned from the trans-

form itself. For example, the existence of transverse electric or trans-

verse magnetic waves may be deduced from a simple examination of the

transform F(s) for any vanishing components. Multiple solutions at a

given frequency are likewise reflected in the multiplicity of the solu-

tion for the transform F(s) at that wave number.

Less trivially, in the case of a sourceless region for which

the normal modes are desired, Maxwell's equations in both the original

and transformed forms will be homogeneous and solutions will exist only

under certain conditions. These conditions will apply Just as well for

the solution of the homogeneous equation in transform space. Typically,

these existence conditions determine the eigenfrequencies of the system

by imposing a restriction on the wave umber, k. Tms if the system
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under consideration is a cavity, its resonant frequencies will be ob-

tained in solving the transformed equations, without the necessity of

transforming back to coordinate space. Similarly, if propagation of

normal modes on a guiding structure is considered, the conditions for

the existence of solutions to the homogeneous transformed equation will

constitute the dispersion relation for the medium. In a propagation

problem the propagation constant appears simply as another parameter and

the characteristic existence condition will prescribe a relation between

the wave number and the propagation constant.

Still more information about the system may be extracted from

the transformed solution by a limited form of inversion of the trans-

forms. Thus, certain quadratic forms in the fields may be evaluated in

terms of the transforms without first obtaining the fieldexplicitly.

Sam quadratic forms of importance are

We(r) - E+(r)e(r)E(r) (5.1)

W (r) - M +(rhp(r)M(r) (5.2)

N(r) - E*(r) x M(r) (5-3)

where * indicates the complex conjugate and + the Hermitian conjugate of

a quantity.. The interest of these quantities arises from the relations

time-average complex electric energy density - (eJI)W e

time-average complex magnetic energy density ,(¢o/)mm

time-average complex Poynting vector - (1/231)N*

In order to calculate these expressions with only a partial inversion of

the transforms back to position space, some of the dyadics to be used

will be partitioned., In the manner of Iks. (3*.6),as follo.

* III ;n
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F(s), the six-vector transform of the field vector S(r), parti-

tions as

F(s) - I I(.&

The diagonal six-dyadic c(r,s) may be partitioned as

The transformation laws for the individual field three-vectorsae

theref ore

E(r) -*e(r,s)V(s) M(r) -$h(r,s)I(s) (5.6)

In addition, let ~4denote the skew-symmetric dyadic associ-

ated with a vector n1. That is,

SLn~] 1_ -n7]
The component of the vector N(r) along any vector n(r) mnay then be

exqpressed as

11(r) . n(r) B E(r) (p(r)] M4(r) (5.8)

Introducing the three auxiliary three-dyadic functions of

three composite indices

rWe(u,r,s) - e+(r,u).(r)e(r,s) (5.9)

VW'(u,r,s) - he(r,u)gt(r)h(r,s) (5.10)

Pn(u,r..s) - e~ru -() ~~)(5.n)
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the three quadratic forms of Interest will be obtainable directly from

the transform of the fields through

W(r) -$ V+(u)We(u,r,s)V(s) (.2e

N(r)-n(r) -*V(u)Pn(u,r,s)I(s)(5l)

It may be noted from Eqs. (5.12) and (5.13) that a passive

medium will be characterized by dyadics We and VP1 that are positive defi-

mite and that this property is directly related to the positive definite-

ness of the constitutive dyadics, as may be seen-from Bqs. (.)and

less trivial qualitative and semi-quantitative information

about the system will be obtainable from an exaination of the character

* I of the Poynting vector field. This may be inferred from Eq. (5.14), In

which n will typically be a unit vector in some direction of Interest.

Thus,. a Poynting vector field which is found to have only an axial compo-

nent will evidently characterize a propagating wave. Similar qualitative

characterizations may be made of such phenomena. as reflection, scattering,

radiation, backtward waves.

Thus, the transform equation, Eq. (I.15), Is, in principle,,

entirely equivalent In content to the original Maxell equations. It

*has the merit that Its solution =W be systematirede



27

6. namER EQUATIOh FORM0ITION

As pointed out earlier, the operator transform equation for

the electromagnetic fields obtained herein has the aspect of a somewhat

generalized integral equation of the first kind. Such equations are

generally intractable by their very nature. Furthermore, the quantities

involved in the equation are dyadics of sixth order. In effect, then.,

the transform equation in its present form, Eq. (4.15), may fairly be

said to be unmanageable.

The six-dyadlic kernel D(u,s) has, however, been so constructed

that a considerable simpj2ification of the equation is possible. The

order of the dyadics to be manipulated may firstly be reduced from six

to three, at the cost of introducing a pair of coupled equations for the

individual field transforms. But then these equations may be reconined

into one equation, still with third-order dyadics, of the form of an inte-

gral equation of the second kind, which is amenable to analysis. There

will then remain merely to adapt the classical Fredholm theory for such

equations to the somewhat generalized type of integral equation to be

obtained here. This process will lead ultimately to a complete, formal

solution to Maxwell's equations.

The reformulation of the equations continues now with the

further dissection of the six-dyadics into partitioned matrices. To

acco~ay the partition of the field fector F(s) in Eq. (,.), the

source vector Q(s) partitions as

1K

I I I I I I I ! ! i n uwj
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4Q(s)-F s7(6.1)

In view of the construction of the maxl operator, Bq. (3.7), and of

the orthonormality of the transformers, c(r,s) and d(s,r), as expressed

by Eq. (4.7), the six-dyadic kernel D(us) has the following highly

significant structure.

D(u,) - (s) -Z(u,s) (6.2)Y(us) 
l(u's)

The three-dyadic immittance kernels, Z(us) and Y(u,s), are defined by,

this equation.

Introducing these partitioned forms of the matrices into the

transform equation, Eq. (4.15), it is seen that the equation can be

decomposed into the network equations

V(U) - W(U) + $ Z(u,s)I(s) (6.3)

I(u) - J(u) + $ Y(us)V(s) (6.4)

In these coupled equations, the transformed field three-vectors V(s) and

I(s) are the unknowns; the three-vectors W(s) and J(s) are transforms of

given sources; the impedance and admittance kernels Z(u,s) and Y(u,s) are

known three-dyadics, obtained by inspection of Eq. (6.2). A comiparlson

is invited of these equations with the static network equations of

14lMrcuvitz or with the dynamic telegraphist's equations of Schelkunoff. 9

The final phase of the ref ormulation process will now be

expounded, with a view to uncoupling the two equations and producing an

equation much like an Integral equation of the second kind, for which a
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general theory may be formulated. The uncoupling process is analogous

to that which, for a homogeneous medium, produces the wave equation from

the coupled M&xwell equations; it involves slui the substitution

• . (6.4) into Eq. (6.3).

Some preliminary definitions wini be found to be convenient.

It is profitable to introduce a new parameter into the equations, for

ease of analysis. While this may be done entirely arbitrarily, it is

particularly convenient, in case the constitutive tensors are independ-

ent of frequency, to let this new parameter, %, absorb and fill the role

of the wave number, k. This rill facilitate the physical interpretation

of some of the equations to be obtained. It should be emphasized that

the present restriction to frequency-independent media is made merely

for convenience of interpretation and will be lifted later.

The system being studied possesses some characteristic dimen-

sions. Fron these, let there be selected a convenient quantity, A,

vith the dimensions of an area, to characterize the physical size of the

system. The dimensionless parameter, X, is defined as

X- l/k 2A(6)

The three-dyadic kernel, K(u, s), is defined by

=(u.s) - k2A $ Z(uv)Y(vs) (6.6)

A review of the steps involved in calculating the two Iusittance kernels

Z(us) and Y(u,s) will readily shoy that, in the case of a frequency-

independent medumn, the kernel K(u, s) is independent of the wave mnAw

k$ and hence of the parmeter X. Finally, the c source, U(s), is

given by
=(u) w(u) + 4 Z(u,S)J(s) (6.7)
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A direct substitution of IBqo (6.4) into Eqj. (6-3) nov Yields

the operator transform reformulation or the electroas.etics problem in

generalized integral equation form,

V(U) - U(u) + IOU, *KuS)V(s) (6.8)

This equation is to be solved for the unknown three-vector V(s) for a

given coo~pund, source U(s), kernel K(u.,s) and parameter X. When the

solution Is introduced into l. (6.4) to calculate I(s), the cainlete

solution for the transramed fields is obtained.
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7. ~MI OF Sa ON

The final reforwilation of Maxwell's equations obtained here,

If (6.8),

V(u) - U(u) + % $ K(u,s)V(s)

has the aspect of a linear Fredholm integral equation of the second kind.

The classical Fredholm theory for such equations must, however, be modi-

fied for the case at hand since the equation is somewhat more general

than the prototype equation treated by Fredholm. In the present case,

a generalized, multiple sumnation replaces the single integration of the

original Fredholm equation, the range of summation is generally not a

simple closed interval of integration, and dyadic quantities appear in

the smmands.

This last innovation, represented by the dyadic character of

the kernel, requires a nontrivial modification of the Fredholm theory.

15-20For this theory is usually developed in terms of determinants with

elements formed from the values of the kernel at various points. Were

this process carried out formally in the present case, there would be

obtained determinants with noncommuting, metric elements, whereupon the

theory would break down. A formulation is required which avoids the

formation of determinants and is applicable to this matric equation.

Such a formulation can be developed, in close analogy to that

presented by Smithies,1 7 but with certain modifications demanded by the

dyadic character of the kernel. The quantities normally given by deter-

minants will, in this *Ltric case, be e essed in terms of a art of

recursion relations.

ii
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The method of solution to be presented here takes full advan-

tage of the linearity of the equation by providing a solution for the

case of just a unit source function. The solution for an arbitrary

source can then be obtained by superposition. The resolution of the

problem posed by Eq. (6.8) reduces then to the search for the resolvent

kernel H(u,s;X), which plays the role of a Green's function for the

equation, in terms of which the solution to the equation

V(u) - U(u) + $, K(u,s)V(s) (7.1)

for an arbitrary source U(s) will be

V(u) - U(u) + X $ H(u,s;%)U(s) (7.2)

Upon substituting this assumed solution into Bq. (7.1), noting that it is

to be satisfied for all sources U(s), it is found that H(u,s;%) must

satisfy the resolvent equation

H(us;.) - K(u,s) + .$ K(u,v)H(v,s;,) (7.3)

The resolvent H(u,s;%) is a three-dyadic kernel associated

with, and entirely determined by, the kernel K(u, s) of the equation.

A study of its properties is equivalent to an analysis of the original

electromagnetics problem. In fact, solving Eq. (7.3) for H(us;%) will

yield the solutions for the transformed fields successively from Eqs.

(7.2) and (6.4). Some of the more significant properties of the resol-

vent are expressed by the following relations, which are fairly readily

derivable from Eq. (7.3).

$ K(uv)H(v,s;),) $ $ H(u,v;,)K(vs) (7.)

H(u,s;O) - K(u,s) (7.5)'

- * H(uv;%.)H(vs;.) (7.6)



- H(u,s;g) - (X-4) $ (uv;%)H(vs;) (7.7)

In E4. (7.6), no susmation over X Is intended, of course, although It is

repeated in the smmand; it Is merely a parameter, not a dW composite

Index.

Another important property of the resolvent, following immedi-

ately frm Eq. (7.2), is that as long as H(u,s;X) Is finite, the homo-

geneous equation

V(u) X $. K(u,B)V(s) (7.8)

will have only the trivial solution V(s) - 0. The homogeneous equa-

tion will have nontrivial solutions, however, but only for certain

characteristic values of X. At these values, H(u,s;k) will have to

become infinite.

In order to gain greater insight into the nature, structure,

and properties of the resolvent, it is instructive to consider a very

special but important case of Ba. (7.1). This is that of a degenerate

kernel, in which case it is possible to give an explicit expression, in

closed form, for the resolvent. A degenerate kernel is one that can be

factored so as to separate its two composite indices. Explicltly, an

n x n dyadic kernel K(u,s) Is degenerate if it can be expressed in

factored form as

K(u,s) - A(u)B(s) (7.9)

where A(s) is an n x r dyadic function of Just one composite index and

B(s) is an r x n dyadic function of one index. Let the obverse of the

degenerate kernel be defined as the r x r constant dyadic

R - $ 3(6)A(a) (7o10)
&8
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In the degenerate case, then, Eq. (7.1) becomes

V(u) - U(u) + X A(u) $ B(s)V(s) (7.3)

from hich there may be obtained a simple matric equation for the auxil-

iazy unknown X $ B(s)V(s) by preimltiplying by B(u) and s'wuuing:

X = B(u)U(u) + R X712)

This equation may immediately be solved for X, which may in turn be sub-

stituted in Eq. (7.11) to obtain the solution for V(s). Upon comparing

the result with Eq. (7.2), it is seen that the resolvent for this degen-

erate case is given by

-1
H(u,s.) = A(u)(l - X R) B(s) (7.13)

The structure of this explicit expression for the resolvent for

a degenerate kernel clarifies many of the properties of resolvents for

the general case. The properties stated in Eqs. (7.4) - (7.7) may be

readily verified for this resolvent. Of greater importance for the

sequel is the fact that the resolvent contains as a common denominator

the determinant det (1 - X R). This scalar function of the parameter

X determines the poles of the resolvent considered as a function of X.

The secular equation is

det (1 -X R) = 0 (7.14)

and its roots are those values of X for which the homogeneous equation,

Eq. (7.8), has nontrivial solutions. In fact, it may be seen from Bqs.

(7.12) and (7.11) that the solutions to the homogeneous equation will be

V(s) - A(s) X (7.15)

where X is amy eigenvector of the obverse matrix, R.

The secular equation, Eq. (7.14), is a polynomial equation of

a,,-
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degree r, so that there will be r characteristic values of X, count-

ing multiplicities. This assumes that the order, r, of the obverse

matrix is also its rank; if R is singular, there will be fewer roots,

but then a different factorization of the kernel could have been found

for which the obverse matrix would have had a lower order.

These results for the degenerate case will be generalized for

that of a general, nondegenerate kernel. The central result will be, as

may already be anticipated, that the characteristic values of X will be

given by the roots, not of a polynomial, but of an infinite power series

in X. The explicit expression for the resolvent in the degenerate case

given in Eq. (7.13) provides the clue to the structure of the general

resolvent.

'K
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Eq. (7.13) is a prescription for calculating the resolvent of

a degenerate kernel. The poles of the resolvent, which correspond to

nontrivial solutions of the homogeneous equation, occur at the roots of

the determinant det(l - X R), a polynomial of degree r in X. These

characteristic values of X are an intrinsic, though latent, property of

the kernel and the fact that there is a finite number, r, of such roots,

counting multiplicities, is the essential characteristic of a degenerate

kernel.

A nondegenerate kernel will inherently possess an infinite

number of characteristic values of the parameter X. No factorization

into matrices of finite order as in Eq. (7.9) will then be possible. It

is always possible, however, to approximate the kernel arbitrarily close-

ly in such factored form, provided matrices of infinite order are admit-

ted. This is so because this decomposition will then be nothing more

than an infinite sum of products of functions of each composite index

separately, which certainly can represent any sufficiently regular ker-

nel with any degree of accuracy. The obverse matrix of a nondegenerate

kernel so expressed will be of infinite order, the determinant det(l- . R)

will be not a polynomial but an infinite power series in X, and the mum-

ber of characteristic roots will, consistently, be infinite. The nonde-

generate case can thus be considered a limiting case of that of a degen-

erate kernel, but with the transition of the order, r, to infinity.

Evidently, however, the calculation of the resolvent of a non-

degenerate kernel by Eq. (7-13) with the obverse matrix, , and the two



factors, A(u) and B(s), of infinite order is not feasible. Nevertheless,

the fact that the resolvent could be so expressed, in a formal sense,

provides the clue to the solution of the problem for general kernels.

For this possibility of considering a nondegenerate kernel as a limiting

case of a degenerate one indicates that the structure of the resolvent

will be that of a resolvent for a degenerate kernel and, in fact, any

property of a resolvent for a degenerate kernel which does not depend

explicitly on the order r or on its finiteness will be possessed by

the resolvent for the general kernel. Recognition of this fact leads to

the solution of the problem.

Accordingly, in direct analogy with the degenerate case, the

resolvent for a general kernel will be assigned the structure

H(u,s;%) - C(u,s;%)/p(X) (8.1)

The determinator, p(h), is a scalar function of only the parameter X and

is the analog of the determinant det(l - X R) of the degenerate case.

The characterizer, C(u,s;%), is a three-dyadic function of two composite

indices and of X; it corresponds to the matrix A(u)Q(X)B(s) of the

degenerate case, where Q(.) is the adjoint of the matrix 1 - ) R.

Both the characterizer and the determinator are unknown. Their

relation to the kernel is readily determined from the resolvent equation,

q- (7.3), by multiplying by p(%). The resulting characterizer equation

is

C(us;) - K(us)p(%) + K(uv)C(vs;)(8.2)

This is, of course, insufficient to determine both C(u,s;.) and p(%).

A further, though still partial, specification of the determinator may

be made in arAlogy with the degenerate case by fixing the arbitrary
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p(o) - 1 (8.3)

It follows from Eq. (7.5) that

C(u,s;o) - K(u,s) (8.4)

Further progress toward the determination of C(u,s;X) and p(X)

may be made by prescribing the structure of the determinator to be the

analog of that of the degenerate case; that is, p(X) istobe a polynomial

in X., but of infinite degree:

p(X) E PXn (8.5)

Eq. (8.3) prescribes that po 1 1; all other coefficients remain unknown.

Similarly, the characterizer will be expanded as

C(u,s;%) = C (us)xn  (8.6)

Here, Co(u,s) - K(u,s) and the other three-dyadic coefficients are un-

known. Upon substitution of these assumed expansions into the charac-

terizer equation, Eq. (8.2), there is obtained the recursive character-

Izer equation

Cn(U'S) u K(us)Pn + $ K(U'V)Cn-i(vps) (8.7)

Eq. (8.7) is a recursion relation for the characterizer coeffi-

cients, but it. requires a knowledge of the determinator coefficients, Pn,

for the successive calculation of the Cn(us), starting from the known

initial coefficients

Co(u,s) - K(us) Po  1 1 (8.8)

There remains, then, to specify the determinator coefficients, whereupon

all the characterizer coefficients vi be obtainable in succession from

ii
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the recursive characterizer equation, and from these the complete solu-

tion for the general kernel. But, at this point, an impasse appears to

have been reached since all information about the resolvent has already

been utilized in obtaining the characterizer equation and no informa-

tion at all is available for the specification of the determinator

coefficients.

This, however, is clearly as it should be, for two unknown

quantities were introduced in Eq. (8.1) to replace the one unknown

H(u,s;%). The determinator coefficients, exclusive of PO, are therefore,

in fact, entirely arbitrary. Any chosen set of coefficients pn may be

used in Eq. (8.7) to obtain the corresponding set of characterizer coef-

ficients Cn(us) and, from these, the resolvent H(us;X). The resultant

expression will, of course, be valid for only that range of the parame-

ter X for which both series of Eqs. (8.5) and (8.6) are convergent.

In view of the arbitrariness of the determinator coefficients,

it is tempting to simplify the expressions by selecting zero as the

value of all determinator coefficients, except p0  This eliminates the

question of the convergence of the series for the determinator and sim-

plifies the recursive characterizer equation to

Cn(Us) - K(u,v)Cnl(v,s) (8.9)

which, with Co(u,s) - K(u,s), readily yields each characterizer coeffi-

cient in succession. With this choice for the Pn' the final expression

for the resolvent is

H(u,s;,,) E e+l(u,.),n (8.o)
no

where the "powers" of the kernel are defined recursively byI 1(u,.) - K(u,.) K (u,s) . * K(u,v)Xn(v,s) (8.11)

' ' I I I|



This is certainly a proper solution to the resolvent equation.

It is, in fact, the Neumann series solution which could have been ob-

tained directly from the resolvent equation, Eq. (7.3), by iteration;

i.e., by introducing the entire right-hand side of this equation into

the summand appearing therein, and repeating the process indefinitely.

This Neumann solution has the drawback, however, that the range of X for

which it converges is too small. The series of Eq. (8.10) actually

diverges for all values of X with absolute value greater than that of

the characteristic value of smallest magnitude. As has been remarked,

the characteristic values of X and the associated solutions of the homo-

geneous equation are of the greatest interest, but the Neumann series

fails to converge as soon as the first characteristic value is attained.

This solution is thus entirely useless for the study of the sourceless

solutions.

This is the crux of the problem. Although the determinator

coefficients are arbitrary, for a given assignment of values to the Pn

the series for p(%) and for C(us;%) will converge only for % within

some finite circle of convergence and the resulting expression for the

resolvent will be valid only in some restricted range of the parameter

X. This situation clearly defeats the purpose of expressing the resol-

vent in terms of a characterizer and determinator. What was intended

was that the poles of the resolvent, which correspond to the character-

istic values of X and the sourceless solutions, be obtainable as the

roots of the determinator. The secular equation would then be simply

p(x) o (8.12)

with an infinite nuaber of roots corresponding-precisely to the infinite
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bnumer of characteristic values of X associated with a nondegenerate ker-

nel. Furthermore, the condition that Eq. (8.12) specify the characteris-

tic values of X was to lead directly to the actual nontrivial sourceless

solutions as well. Thus, if X solves Eq. (8.12), then from Eq. (8.2)

C(u= ,x0 o $ K(uv)C(vps;xo) (8.13)

and a solution to the homogeneous equation, Eq. (7.8), is

V(u) - C(u,so; .o)co  (8.14)

where c0  is an arbitrary, constant three-vector and so is any value

of the composite index s. This sourceless solution will be nontrivial,

provided merely that s0 and c be not chosen so as to annihilate the

resulting V(u).

To fulfill these desired conditions, a set of values for the

determinator coefficients must be so specified that, firstly, both p(%)

and C(u,s;%) be entire functions of X, thereby insuring convergence for

all X and the validity of the expression for the resolvent over the full

frequency spectrum; secondly, that the secular equation, Eq. (8.12),

yield all characteristic values and only the characteristic values of X;

and thirdly, that the eigensolutions C(u, s 0 ; 0 )c 0 be obtained as well.

Now in the degenerate case, in which p(X) is det(l - X R), these condi-

tions are satisfied. To achieve these results in the general case, the

determinator must be specified in the sane way as in the degenerate case,

despite the infinite order of the obverse matrix. That is, the relation

which is to be specified so as to determine, in conjunction with Eq. (8.21

the desired form of the determinator must be precisely that which obtains

in the degenerate case, independently of the order of the obverse matrix.

This relation must be investigated'.
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9. TERMINATION CONDITION

By the foregoing reasoning, the problem has been reduced to

that of specifying a relation between the characterizer and the deter-

minator of the resolvent for a general kernel which will yield the

optimum set of coefficients for the expansion of the determinator. This

optimum condition will be such that the poles of the resolvent will be

the roots of the determinator, both the characterizer and determinator

being entire functions of the parameter X. The relation to be found

will complement that of Eq. (8.2) and thereby provide a sufficient num-

ber of conditions for the unique determination of both the characterizer

and the determinator.

In the degenerate case, the determinator and the characterizer

are

= det(l - X R) C(us;) =A(u)Q(X)B(s) (9.1)

where Q(X) is the adjoint of the matrix (1 - R B):

.1Q(-) - (1 - X R)' det(l - X R) (9.2)

Clearly, there is an intimate relation between p(%) and C(u,s;%), as a

result of which, effectively, both of these are entire functions and the

characteristic values are given by the roots of p(%), regardless of the

order of the obverse matrix, R. As expressed in Eq. (9.1), however-

both p(%) and C(u,s;k) depend on R and can be calculated explicitly only

if its order, r, is finite. In order to adapt the specification of Eq.

(9.1) to the case of a general kernel, it is necessary to express the

relition between the characterizer and deterininator in a form which is



independent of the order, r, of the degeneracy. Such a relation will be

applicable to the case of an obverse matrix of infinite order as well as

to the degererate case. The determinator and characterizer of a degen-

erate kernel are entire functions because they are polynomials in X; in

the nondegenerate case their expansions in powers of X will not termi-

nate, but if the condition on the determinator is taken as the analog of

that which holds in the degenerate case no singularities will be intro-

duced into either the characterizer or determinator to limit their radii

of convergence.

The relation sought is one between the scalar p(%) and the ma-

tric function of two composite indices C(u,s;X). The composite indices

can be readily eliminated by summing over them; there will then remain

to extract a scalar from the residual matrix. A significant set of

scalars associated with a matrix, closely related to its eigenvalues but

more easily calculated, consists of the traces of the matrix. An n x n

matrix A is characterized by n traces. The m-th order trace, Tr A,

is the sum of the principal minors of order m of the matrix. Its

significance lies in the fact that TrmA equals the sum of the products

of the eigenvalues taken m at a time. The trace of A, i.e., the sum

of its diagonal elements, Tr A, corresponds to Tr1 A; the determinant

det A coincides with TrnA. For convenience, the further definitions

will be made that Tr0 A w 1 and that TrmA = 0 for any m which exceeds

1the order n.

From the relation between the traces and eigenvalues of a ma-

trix, the following properties of the traces may readily be demonstrated.

Tr3 A T RA (9-3)
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r-r

Tr (1+ A)k A (9.6)

The commutation property of Eq. (9.3) holds even if A and B are not

individualy square matrices, although they must be conformable in both

orders. This property results in the invariance of the traces under

similarity transformations. In Eq. (9.4), c is a scalar multiplier.

Virtually the only significant scalar which can be extracted

from C(u,ss;X) by linear operations is

f(% Tr C(s,s;X) (9.7)

It may be expected that this scalar function of X is related to p(X).

This relation constitutes the Termination Theorem, which can now be

proved, granted the preliminary lemma that the operators $ and Tr

commite. There follows

f () - $ Tr A(s)Q(X,)B(s) - $ Tr Q(X)B(s)A(s)

. Tr $ Q(.)B(s)A(s) - Q( ) R

where the commutation property of Bq. (9.3) and the linearity of $ have

been used. Let

- -X R (9.8)

Elence, by Eqs. (9.4), (9.2), and (9.1),

f(X) Tr Tr (+G) pG pr (1+)-
Using Bq. (9.5) and noting th t ( ') -('(0d (G )]

.dpt(14) /det d / .,
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- X f06) - pTrr 1 (l+G')/det(l+40 ) - det Trr_1(1+0 4 )

From Nqs. (9.6) and (9.5),
r-l

X(h) detG jo (r-k) Tk G

r-1

detG ko (r-k) Tr-k / detG

r
.- L mTrmG

which, from Eqs. (9.8) and (9.4), is equivalent to
f(%) EE (-f) r E R m

which may be recognized to be
d r

f(h) " "-a ( m R

But, from Bq. (9.6),
p() w det(l- X ) E (-l)m Tr R (9.9)

M-0O M

Hence f(k) - - dp/d. and the relation sought is

- $ * Tr C(s,s;%) (9.10)

wich depends explicitly on neither R nor its order, r.

Conversely, it may be shown that the power series for both the

determinator and characterizer will indeed terminate for a degenerate

kernel if the condition of Eq. (9.10) is imposed in addition to Eq.

(8.2). For inthe degenerate case, Eq. (8.2) alone yields as the char-

actrler, for any (),.SC(u,sk) .A(u)(l -XR)' (%)B(s) (9.33.)

so tha Tr C(,,B;6) p (%) Tr (.1 -XR)-'R, from vhc

.(l/p)(dp/d) - (d/d)log p Tr(i -X)
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or, in view of the coatativity of Tr and d/dx and of the initial con-

ditions on pX.

log P() - Tr lo0 (1 - XE) (9.12)

But since Tr log A = log det A, as follows from the relation between

the trace and eigenvalues of the matrix log A, Eq. (9.12) implies

p(%) - det (1 - XR) (9.13)

so that the power series for p(h) will terminate at Xr; in fact,
r

P() E (-)m fr H (9.14)
moo m

The Cayley-Hamilton theorem ' 2 2 may be written

r
(_,)rn r H H = 0 (9.15)

or, by comparing the coefficients in Eqs. (9.14) and (9.15),

r
mE prm = 0

By iterating in Eq. (8.7), there is obtained
r

Cr(U'S) - E ?nKZ(us) Pr-m (9.16)

But, from Ie. (8.11),

el(u,s) - A(u) Rn B(s) (9.17)

so that
r

Cr(u,s) I A(u) E pr-m T B(S) 0 (9.18)

Since Pr+l - 0 and Cr(US) - 0, Eq. (8.7) implies that all higher-

order coefficients of C(u,s;X) vanish. Hence both the deterninator and

characterizer expansions for a degenerate kernel will ternnate as a
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reult of the application of Eqs. (8.2) and (9.10).

If the termination condition is applied to the nondegenerate

case, the series will not actually terminate, but its effect, which is

to cancel the poles of (1 - XR) with the zeros of p(%) in Eq. (9.11)

so as to render C(u,s;) an entire function, will persist even as the

order of the degeneracy, r, is allowed to become infinite. Thus, the

termination condition, Eq. (9.10), realizes the proper pole cancella-

tion property of the optimum determinator.



10. COMPLMZ SOUTION

The characterizer equation and the termination condition,

together with the initial conditions, provide the complete solution to

the problem posed herein. These equations are

C(u,s;%) - K(u,s)p(X) + X $ K(u,v)C(v,s;) (10.1)

2k - $ Tr C(ss;.) (10.2)

p(o) - 1 C(u,s;O) - K(u,s) (10.3)

Upon solving these for the characterizer C(u,s;.X) and determinator p(X),

the resolvent H(u,s;%) is obtained as their ratio, Eq. (8.1). This

Immediately yields the field transforms V(s) and I(s) from Eqs. (7.2)

and (6.4) and these may be inverted to obtain the actual fields in co-

ordinate space.

Perhaps of greater importance than the fields for the study of

a given linear medium is the fact that the eigenfrequencles are obtain-

able from the secular equation

p() - 0 (lO.4)

This equation, the central result of the theory, has the significance of

a dispersion relation for a propagation problem, or of a resonance condi-

tion for a cavity, or of any equivalent relation among the frequency of a

wave, its wavelength and other characteristics, and the dimensions and

electrical properties of the medium. As such, the secular equation

affords a powerful characterization of the electromagnetic properties of

the madi.n.
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In conjunction with the solution to the secular equation,

there is obtained in this formulation the associated characterizer,

which corresponds essentially to the residue of the resolvent at its

pole. This characterizer yields the solutions to the homogeneous equa-

tion, Eq. (7.8), as

V(s) - C(s,so;xo.)Co (10.5)

where XO is a root of the secular equation, so is any value of the com-

posite index, and c0 is an arbitrary constant three-vector. The constant

vector co, together with the selected value of so, plays the role of the

arbitrary amplitude coefficient for the normal mode.

The actual solution of Eqs. (10.1) and (10.2) may proceed by

recursion. The determinator and characterizer are expanded in power

series in X, as in Eqs, (8.5) and (8.6), which, upon substitution into

Eqs. (10.1) and (10.2) and comparison of coefficients, yield

Cn(u,s) . K(u,s)pn + $ K(u,v)Cnl(VS) (10.6)

- n Pn - Tr Cn-l(ss) (10.7)

p 1 Co(u,s) - K(us) (10.8)

These equations suffice to yield all the unknown coefficients of both

p() and C(u,s;%) in succession. Starting with Eq. (10.8), p1 is ob-

tainable from Ik. (10.7), whereupon C1(U,S) can be calculated from Eq.

(10.6) and this, in turn, will yield p2 through Eq. (10.7); the process

may be repeated indefinitely to obtain, in principle, explicit expan-

sions of the determinator and the characterizer. The rapidity of con-

vergence of these expansions depends, of course, on the original choice

[

i i a ~I , ,
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of expansion functions, c(r,s), for the transformation. The solution of

the problem would then proceed with the solution and study of the secu-

lar equation, Eq. (10.4).

There can arise a situation in which the procedure just de-

scribed may be thwarted at its start. This is the case if K(us) is in-

finite or undefined for u = s, whereupon the prescription for calculat-

ing p1 from Eq. (10.7) is ineffectual. This situation demands a modi-

fication of the recursion relations which will sidestep the difficulty.

That such a modification is possible is the result of the

residual ambiguity of the characterizer and determinator. The essential

quantity is the resolvent and this has been found as the ratio H(u,s;) -

C(U,s;%)/p(%). Both numerator and denominator of this ratio may be

multiplied by some scalar function g(k) to yield the equivalent ratio

H(u,s;.) - D(u,s;x)/q(.) (10.9)

where

q(%) p(%)g(.) D(u,s;.) - C(u,s;x)g(%) (10.10)

To preserve the initial value of the determinator, g(O) 1 1 may be speci-

fied. The modified characterizer equation is then essentially the same,

D(u,s %) - K(u,s)q(%) + X $ K(u,v)D(v,s;.) (1o.1)

but the termination condition is altered to

$ Tr D(ss;%) - t(%)q(X) (10.12)

where

t(k) =(1/g) (dg/d%) (10-13)

Now if g(k) is chosen such that

t(h) - t - $ Tr K(s,s) (lO.l)

m ~ I II II II II II ,m ,m u,
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* then the modified termination condition will be

. u_ $ Tr [D(s,s;%) - K(sos)q(.)] (10.15)

If power series expansions of D(u,s;X) and q(X) are made, the modified

recursive characterizer and termination equations become

Dn(us) . K(u,s)% + $ K(u,v)Dn l(vs) (10.16)

- n .$ Tr [Dn(s ,s) - K(ss)%.1 ]  (10.17)

qo 1 D o(us) - K(us) (10.18)

The result is that ql = 0 and manipulation with the possibly nonex-

istent K(s,s) has been avoided. From Eqs. (10.13) and (10.14) there

follows that

q(X) - etX p(X) (10.19)

so that no new zeros have been introduced into the determinator, both

q(%) and D(u,s;) are entire functions, and the modified secular equation

q(X) - 0 (10.20)

yields the same results as does Eq. (10.4).

A more serious crisis can arise in the previously described

method of extraction of normal modes, Eq. (10.5). The trivial zero vec-

tor may be obtained if co and s are injudiciously chosen, but, normally

such values of o are the exceptional, easily avoided ones. In some

cases, however, the process may fail entirely for all values of s and

c because C(u,s;Xo ) may vanish identically. This situation may arise

if X is a multiple root of the secular equation. The procedure for ex-

traeting the normal modes then becomes considerably me complicated.

I



Since no information vas lost in translating the problem from Maxvell's

equations to the present formulation, it may yet be expected that some

further set of operations may be applied to the characterizer to extri-

cate the complete set of normal modes from the equations even in case

X is a repeated root of p(%). The appropriate operations for this

purpose will now be expounded.
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U. NONGAL MODES

The present reformulation of Maxwellts equations incorporates

all the results obtainable for any linear medium in the corresponding

resolvent H(u,s;%). The physical properties of the medium are reflected

in the analytic properties of this function. In particular, the reso-

nance condition or dispersion relation characterizing the medium is a

mathematical statement which locates the poles of the resolvent, whnile

its residues describe the normal modes of the system.

The basis for obtaining the normal modes is the principle that

if there be extracted from the resolvent any matrix T(u, s;%) with the.

property that

T(u,s;X 0  X 0 $ K(u,v)T(v,s;) ui

where Xo is a root of the secular equation, then this matrix will gener-

ate solutions to the homogeneous equation, Eq. (7.8), as follows.

V(u) - $ T(u,s;)60 )c(s) (1.2)

I(u) - $ Y(uPs)s) (11.3)

Here, c(s) is an arbitrary three-vector function of one composite index.

For this sourceless solution to be nontrivial, it is required merely

that the vector c(s) be not one that is annihilated in summing with

T(u,S;Xo). This requirement is normally so weak that the smmation may

be avoided entirey by choosing a unit function for the arbitrary vector:

c(s) a c 0l(s,so), where s o is ar value of the composite index and co

any constant three-vector, each selected so that the resulting V(u) does

not vanish. this procedure offers no difficulty unless T(u,S;o) is



Identically zero.

As indicated previously, the characterizer C(u,s;%) is such a

matrix and it does yield a normal mode for each root of the determinator

in this manner. The process fails, however, if C(u,s;%) vanishes iden-,

tically atX= X This can occur if X is a multiple root of the
0 0

secular equation. Another matrix T(u,s;%) must then be found which

satisfies Eq. (11.1) for this X = X and which does not vanish. Clearly,
0

this corresponds to finding the residue of the resolvent at a pole of

higher order. The procedure for finding the normal modes for multiple

eigenvalues is, in fact, analogous to that of extracting such a residue

and is Justified by the following Successor Theorem.

Let a differential operator Dn(K) be first defined by

=,n ef
D (X)f(X) × n

n n. akn

It is readily verified that this operator's effect on a product is ex-

pressed by
n (11.5

n - o ninn

Furthermore, by virtue of the property of the resolvent given in Eq.

(7.6)., and defining-the "powers" of the resolvent just as those of the

kernel were defined in Eq. (8.11), it is found that

D(X)H(u,s;X) - , Hn1 (u,s;,) (1..)

Let now the successors Sn(u.s;X) and the terminators gn(X) be defined

by
D nu, . n n(%.)C(u,s;%,) gn(%,) D (X)p,(%) (3-1-7)

The relation between these quantities is revealed by applying the D ()

operator to the defining equation

I I II II nu
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C(us;x) H(us;)p) (31.8)

to obtain, by use of Bqs. (U.5) and (11.6),

Sn(u,s;%) .+-rn (n.9)

Comparing this expression with the same one written for S.l(Uis;%),

there is immediately obtained the recursion relation

Sn(u,s;%) - X $ H(u,v;%)Sn.(v,s;%) + H(u,s;X)g>.() (31.10)

The effect of the kernel K(us) operating on a successor is obtainable

from this recursion relation by applying the resolvent equation, Eq.

(7.3), directly. The result is

sn(us;%) . $× K(u,v)Sn(v,s;%) + Rn(u,s;%) (11.11)

Rn(u,s;%) - X $ K(u,v)Sn1l(vs;%) + K(us)gn(%) (11.12)

Thus, the successor Sn(u,s;%) will satisfy Eq. (11.1), provided that

(u , s;xo) vanishes.

To apply this Successor Theorem to the problem of calculating

the normal modes of a system, consider a case of a determinator p(%)

which has a zero of multiplicity z at X - Xo; that is, p(X) has

(1 - A/o)z as a factor. It may then be that C(u,s;%) contains

(1 - %/O)e as a factor, with 0 < e < z. If e 0, C(u,s;k O ) vanishes

and no nomal modes are obtainable from the chracterizer. But the

appropriate successor may then be used in lieu of the characterizer to

generate a sourceless solution. For, in this case, gn() 0 for

0 0< n < z while g (ko) 0 and S (us;%o) - 0 for 0 < n < while

0 . s implies that Re(u1,s;%) - 0, so that e(Us; o )

satisfies Eq. (11.1) and yields a solution to the homogeneous equation.



While this disposes of the problem of obtaining a normal mode

at an eigenfrequency, it leaves the question of whether any other nor-

mal modes, independent of the one obtained as above, may exist for the

same frequency. The rather complex answer to this question may best be

derived from a detailed study of the structure of the resolvent for a

degenerate kernel, which will now be outlined.

In the degenerate case, all sourceless solutions are of the

form

V(s) = A(s) X (1 - XoR) X = 0 (u.13)

Hence, the question reduces to that of determining the number of indepen-

dent eigenvectors X of the obverse matrix R for X = X This question,

together with the main problem of how to extract these normal modes from

the kernel, may be resolved by examining the Jordan canonical form of

the obverse.a 1 2 2  If S is the similarity transformation matrix which

reduces the obverse to its canonical form, it becomes clear from an

examination of the detailed structure of the matrices involved that the

normal modes sought are linear combinations of certain specific columns

of the matrix A(s)S, the eigencolumns. While this matrix is beyond cal-

culation, the internal structure of the successors is such that they too

are formed from linear combinations of certain columns of this matrix.

The successors for a degenerate kernel are, from Eq. (9.1), Sn(u,s;%)

= A(u) Dn(X)Q(X) B(s) and upon examining the canonical form of D

V it is found in general that, first, for e < n < z, each Sn(us;X.) is

formed from linear combinations of columns of A(u)S which include some

eigencolumns; second, Se(u,s;\o) is composed of only eigencolumms but

the other successors include extraneous columns; third, eigencolums not

,I
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included among the first few nonvanishing successors will be found among

the remaining successors; finally, all the eigencolunns are represented

among the cumplete set of successors Sn(u,s;o) for e < n < z.

Being thus assured that all the independent normal modes are

obtainable from linear combinations of the several successors, there

remains only to select the appropriate linear combinations to extract

only the eigencolumns, filtering out the extraneous columns, and yet

obtaining all the independent modes. The Successor Theorem shows how

to accomplish this.

First, as already demonstrated, at least one normal mode may

be obtained from Se(US;Xo) as V1 (U) - $ Se USpo)cl(s). If this suc-

cessor incorporates more than one eigencolumn, then these other modes

will be obtainable as well by simply choosing other arbitrary vectors

cm(s) to form new, independent linear combinations of the eigencolumns

in Se(us;o) in the same way.
Next, once all the independent modes within Se(u,s;o) have

been exhausted, the eigencolumns in Se+l(us;ko) may be weeded out in a

similar manner, except that the selection of arbitrary vectors cm(s)

must be severely restricted to avoid linear combinations in which the

extraneous columns appear. From Eqs. (11.11) and (11.12), it is clearly

sufficient that these Cm(s) come from just that set of vectors which was

excluded in the previous step; that is, these new vectors must be select-

ed from among all those which are annihilated by Se(Us;)%), for then

$ R 1 (Uls;,o)cm(s) vanishes and a new set of normal modes arises from

$ Se+l(US;xo)cm(S). More modes, in fact all of them, will be similarly

obtainable from the other successors Sn(us;Po) by smming with vectors

Ill



c (s) which are =msted by sn.(u,s;,o) and not by Sn(u,s;.o) but

which are otherwise arbitrary. The process must terminate no later than

when Sz_(u,s;Ao) has been forced to yield its eigencoltuns.

Much of the vagueness associated with this process may be

eliminated through a system of tabulation which traces the progress

towards the extraction of all the normal modes from the successors, pro-

vides upper bounds on the number of modes which each successor may be

expected to yield, and signals the end of the process as soon as all the

modes have been obtained, thereby averting a fruitless search for non-

existent modes. The tabulation stems from a classification of all pos-

sible structures which any matrix may have in its Jordan canonical form.

With the eigenvalue Xo of multiplicity z, of the obverse matrix R there

is associated a classifier, h, consisting of z positive integers, hm,

with the properties
z

M', h - (n.l)

hm M~(nW15)

There are as many independent eigenvectors of R, or eigencolimns of

A(u)S, or normal modes, as there are nonzero elements of h. To a mode

obtained from Sn (u,S;o) there corresponds a nonzero element of h of

value z-n. These conditions jointly delimit the number of steps re-

quired in the process of extraction of the solutions to the hmogeneous

equation from the successors.

With the observation that the terminators and successors can

be calculated directly fron the determinator and characterizer coeffl-

ients, found fan Eqs. (.o.6)-(lo.8), as
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I " Pm~~" S.(Up5~. 8; X)(~ (3-1.16)

the foregoing is seen to constitute a cagplete prora for obtewaing fl

the normnal modes of a given linear medium.
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3.2. GNIMRA SOWIO

The theory presented herein not only reformulates the elec-

tromagnetics problem of a linear medium in terms of a new equation to

replace those of Maxwell but prescribes a step-by-step procedure for

solving this resolvent equation and for extracting all the pertinent

information about the system as well. The information obtainable fra

this formulation excludes none that could be obtained from Maxwell's

equations, but it emphasizes the dispersion, resonance, or other exist-

ence condition characteristic of the medium and the complete set of nor-

mal modes associated with it, rather than the actual fields produced by

any distribution of sources and the power and energy carried by the

fields. The former are actually the relations of greatest interest and

significance in most situations.

The recursive solution for these quantities embodied in Eqs.

(10.6)-(10.8) demonstrates the possibility of obtaining a coeplete,

exact solution to the resolvent equation. This particular method of

solution may, however, be among the least efficient of the many which

are available. The resolvent equation

~us;X) .- KC(u, s) + . $ K(u,v)H(v,s; ) (12.1)

is the result of central importance in the reformulation and should be

considered on its own merits, without any particular solution procedure

appended to it. A host of analytical tools may be applied for its solu-

tion., for which purpose a compilation of the equation's min properties

and a few approaches to its analysis should be useful.

A

I ~~~ ~~I i l I I I l I I l l l I
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The Neumann series solution to Bq. (12.1), obtained directly

by iteration, has been given in Eq. (8.10). As already noted, this ex-

pension is convergent only for small X and cannot be used to obtain the

normal modes. It should be useful for high-frequency approximations.

12Furthermore, various analytic continuation techniques may be applied

to this series to extend its validity to the entire frequency spectrum.

The Fredholm solution, Eqs. (10.1)-(10.3), has been designed at the out-

set for validity at all frequencies, both the characterizer and deter-

minator being entire functions. In this formulation, the existence

conditions are expressed by the vanishing of the determinator.

For special forms of the kernel, a complete, exact, closed

solution is imediately obtainable. One such type of kernel is the

degenerate one, which was treated at length in the foregoing. Its re-

solvent is given exactly by Eq. (7.13) and the existence conditions are

Just those which an eigenvalue of the obverse matrix must satisfy.

Another type of solvable kernel, which meV be termed "ideal," is one of

the form

K(u,s) - N(s) l(u,s) (12.2)

The unit function permits a direct solution to the resolvent equation.

The resolvent of the ideal kernel is found to be

H(u,s;) - [l - W(s)] 1 N(s) l(u,s) (12.3)

and the existence condition is
d I1-N - o (1

It should be noted that the composite index appears here explicitly in

the secular equation. Linear combinations of degenerate and ideal ker-

nels also lead to closed forms of resolvnts, VIth the aid of some other
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properties of resolvents listed below.

The differential equation satisfied by the resolvent is

Hu s). $ H(u,vP%)H(v,s;)).

With the initial condition

H(u,s;,O) . K(u,s) (12.6)

this may be considered an alternate definition of the resolvent. More

basic still is the functional equation for the resolvent,

H(u,s;X) - H(u,s;g) = (X-C) $ H(u,v;X)H(v,s;9) (12.7)

which identifies the class of functions to which all resolvents belong.

General properties of resolvents include that of commtation:

SH(u,v;X)H(v,s;9) = $ H(u,v;A)H(v,s;X) (12.8)

In particular, the resolvent comnutes with the kernel. The resolvent of

a kernel which is proportional to one whose resolvent is known is found

as

K(u,s) - a Ko(u,s) H(u,s;x) - a H0(u,s;ax) (12.9)

If two kernels are orthogonal; that is, if

$ Kl(u,v)K2(vs) - * K2(uv)Kl(v,s) - o (1.10)

then the resolvent of the stum is the sum of the resolvents:

Cu, s) -~ K(u,s)+K2(u,s) H(us;X) - H1 (us;X)+f2(us;X) (12.11)

The resolvent of a kernel which is the sum of a degenerate one and one

whose resolvent is known is expressible in closed form, as follows. If

K(u,s) . A(u)B(s) + Ko(u,s) (12.22)

then let

Ao(U;X )  A(u) + . * 1o(usA)A(s) (12.13)I
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B-s% B(s) + X. * (u)K (u,s;%) (12.1&)
o( 0 % B(s)A0 (;%) * 3o(s;%)A(s) (12.15)

and the resolvent for this partially degenerate kernel is

H(u,s;%) . Ho(u,s;%) + A0 (u;%)l-Po( )F'B 0(S;) (12.16)

Finally, it is noteworthy that the recursion relations of Eqs.

(10.6)-(10.8), which produce the power series expansions for the charac-

terizer and determinator of the Fredholm solution, are explicitly solv-

able, yielding expressions for each of the determinator and characterizer

coefficients which may be evaluated directly from the kernel, he kernel

must first be processed to yield the terminants,

t n  n (-i/n) $ Tr Kn(s,s) (12.17)

In terms of these, the explicit expressions for the determinator and

characterizer coefficients are

n 
emmnET = 2 (12.18)

Cn(u,S) E Je1 (u,s)pnm (12.19)n MWO •-

In Eq. (12.18), the sunmation is over all terms of the indicated type

which m@V be formed from n positive integers em  such that. 0 < em < n

and
n
E m em - n (12.20)-

Eqs. (12.17) and (12.18) epitomize the entire processing required to

extract the existence condition from the kernel. The recursion rela-

tions may, however, be more convenient than these cumbersome explicit

expressions.
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The foregoing brief sumnary of the analytic properties of

resolvents is intended as a guide to the most efficient way of attack-

ing the resolvent equation for anr particular problem. It may be seen

that the ease with which the equation may be manipulated and solved

depends mainly on the form of the kernel. A crucial point to be noted

is that the form of the kernel is in great measure dictated by the orig-

inal choice of the basis of representation for the solution. Although

the choice of the coplete sets is in principle arbitrary, a judicious

initial choice will clearly simplify all further calculations.

V
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1'13. OMIDAL TBC IIQU

The theory developed herein may be extended through general

and special techniques applicable in various situations. Specialization

may be desirable in certain cases with simplifying features for which

5 the use of the formidable machinery set up here would be an extravagance.

Generalizations, on the other hand, can lead to the relaxation of some

of the restrictions under which the theory is valid.

One restriction which may easily be dropped is that which re-

quires the constitutive tensors to be independent of frequency. This

condition was imposed for convenience of interpretation of the secular

equation as a dispersion relation or resonance condition. Many of the

equations obtained, particularly the termination condition, are not

valid if the kernel is a function of the parameter X, which is the case

when the constitutive tensors depend on the excitation frequency.

To adapt the theory for the case of frequency-dependent con-

stitutive parameters requires only the redefinition of the parameter X

and of the kernel K(u,s). Abandoning the original relation between X

and the frequency, expressed in Eq.. (6.5), the parameter X is now to be

considered an arbitrary auxiliary variable unrelated to any physical

quantity. The kernel K(u,s) of Eq. (6.6) Is now more conveniently re-

defined as simply

IK(u,s) - $ Z(u,v)Y(v,s) (13.1)

The entire subsequent theory remains valid, vith only the following

slight modification. With this new diftnition of the kernel, Eq, (6.8)

&
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represents a problem somewhat more general than required, but one which

reduces to that of Maxwell's equations for A - 1. This last specifica-

tion is therefore to be introduced into all the equations iso as to make

them valid for the electromagnetics problem in question. In particular,

the new secular equation is

p(l) 0 o (13.2)

which, despite the appearance of overdetermination, simply fixes the

wave number k in relation to the dimensions and other parameters of the

system. Eq. (13.2) can hence be interpreted in the same way as was Eq.

(i0.4). Complications may arise, however, since the expansions of the

determinator and characterizer can no longer be claimed to converge over

the entire frequency spectrum, for the frequency dependence of the con-

stitutive parameters may introduce singularities into these functions.

Analytic continuation techniques may then be required to suit the partic-

ular frequency dependence of the medium.

A more sweeping alteration of the theory is called for in case

the kernel is singular. A weak type of singularity has already been

disposed of through a modification of the termination condition as in

Eq. (10.15). For stronger singularities, however, in which higher powers

of the kernel are also singular, this modification is ineffectual. This

is the case, for example, with the ideal kernel of Eq. (12.2). What is

0required in such cases is a redefinition of the determinator, as follows.

H(u,s;,) - C(u,s;%.)/P(SB;) (13.3)

The ideal determinator, p(s;%), is now a function of the composite index

s as well as of the parameter %. The termination condition nuat corres-

pondingly be modified to
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-$ T r C(u,s;x) (13.4~)

where, as indicated, the generalized summation is to be performed only

over the composite index u. A similar modification in smmation is to

be introduced into the appropriate equations of the rest of the theory,

which thereupon remains valid even in such singular cases.

The new secular equation for such cases is

p(s;X) - 0 (13.5)

Its interpretation is no more difficult than that of the previous form.

Here, the existence condition relates the wave number k implicit in X to

not only the dimensions of the system but to the transform index s as

well. This index will then readily be assigned a physical significance,

such as that of a propagation vector in a dispersion relation.

Specialization of the theory is called for to take advantage

of such simplifying features of a problem as its symmetry properties.

For example, a typical propagation problem may involve axial symmetry,

which invites the introduction of a propagation factor of the form

•-jbz in cylindrical coordinates. This simplifies the subsequent cal-

culations since this will be the dominant, if not the only, axial vari-

ation of the fields. The resulting simplification can be introduced at

the outset by modifying the curl operator of Eq. (3.2) to the extent of

replacing B/Iz by B/bz - jb and then eliding the propagation factor.

Similar modifications may be made in case of circular or other synmmetry.

More generally, the presence of synmetry in a problem can lead,

with the appropriate choice of the basis of representation, to a reduction

in the dimensionality of the resolvent equation. If the ccqposite Index
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can be partitioned as s = (slS 2 ), so that the kernel is ideal with

respect to one part of the index, then the multiple sumnations can be

reduced in number. Thus, if K(u,s) = K(sl;u 2 ,s2 )1(ulsl1 ), then

H(u's;%) - H(s1 ;u 2 ,s 2 ;%)I(Ul,Sl), with the dimensionally reduced

resolvent equation

H(s1;u2,s2;%) = K(sl;u 2,s2 ) + X $v2 K(sl;u2 ,v2 )H(s.;v2,s2;%.) (13.6)

in which the status of sI is that of a parameter, rather than of a dum=

index.

Another feature of some media which allows the calculations to

be reduced is the presence of conducting regions or boundaries. These

can be treated formally by introducing infinite values of the conductiv-

ity into the permittivity dyadic for those values of the position vector

which correspond to the perfectly conducting regions of the space. In

the case of a closed system bounded by conducting walls, the result is

that the integrations involved in the transformations become limited to

the interior region of the system.

If approximate solutions suffice for the application at hand,

many simplifying techniques are available. A general kernel could be

approximated by one which is degenerate, whereupon an exact, closed-

form solution for the resolvent for the approximate kernel is obtainable.

Another situation in which the full machinery of the theory is needlessly

cumbersome if approximate solutions are adequate is one which represents

a slight perturbation of a medium for which the kernel is degenerate.

The kernel will then be expressible as in Eq. (12.12), in which Ko(US)

is, in some appropriate sense, small. The Neumann series, Eq. (8.10),

is then a rapidly convergent expression for the resolvent 1o(uuS;X) for
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the perturbing kernel Ko(u,s). The solution given in Eq. (12.16) can

then be used, with o(Us;%) known at least approximately. Still

another type of ready-made approximation is available in case the kernel

is sharply peaked near u = a, though perhaps not actually of the ideal

type. The approximate resolvent is then easily seen to be

[l (1 K(uv)V'K(us) (13.7)

This last approach can be the basis for a method of "moments" for approx-

imating the resolvent, in which the resolvent is expanded in a power

series about the value of the composite index at which the kernel is

peaked and a set of simultaneous matric equations is solved for the

resolvent.

An extensive generalization of the theory may be undertaken

with the goal of lifting the restriction to time-invariant media. While

slow time variations of the constitutive parameters present no diffi-

culties in yielding to analysis as modulated waves, rates of variation

comparable to those of the fields would require the abandonment of the

original steady state, harmonic analysis. The theory could be reformu-

lated in terms of a maxl operator which incorporates the partial deriv-

atives with respect to time. The only remaining restriction upon the

applicability of the theory would then be simply to media which are

linear.
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As an illustration of the applicability and feasibility of the

method of analysis presented herein, there will now be obtained there-

with the solution to a particular class of problems in electromagnetic

theory. Although this example is computationally quite trivial and is

certainly not intractable to standard methods of analysis, it does aid

in concretizing the rather abstract theory and possesses sufficient

generality to be of interest. A specific example of this class of prob-

lems will also be examined in detail in order to dLsplay the nature of

the calculations involved in the matrix formulation which underlies the

theory.

The system to be analyzed is that of an infinite, homogeneous,

linear medium. Such a medium is characterized by permittivity and per-

meability tensors which are independent of position, though otherwise

arbitrary:

e(r) = e p(r) = p (il.1)

The complete solution, as embodied in the resolvent for this system,

will be obtained and, in particular, the dispersion relation for the

medium. The theory may be applied as follows.

As there is no characteristic physical dimension of the system

and since, moreover, the constitutive tensors may be functions of fre-

quency, the kernel as defined in Eq. (13.1) will be used and X will be

set equal to unity in the final result. For lack of any reason to com-

plicate the calculations, the transformer c(rs) which forms the basis
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of representation will be assumed to be a scalar. The immittance ker-

nals are then given by

Z(us) - $ d(u,r)(ke)icurl c(r,s) (14.2)

Y(us) - $ d(u,r)(kp) '1curl c(r,s) (i.3)

as is clear from an inspection of Eqs. (6.2), (414.), (3.7), (3.4.), and

(3.5). As a result of the constancy of the constitutive tensors and the

scalar character of d(ur), these may be rewritten as

z(u,s) - (ke)"1 $ d(u,r) crl c(r,s) (14.4)

Y(u,s) = (kp)i $ d(u,r) curl c(r,s) (i..5)

In view of the orthonormality relation of Eq. (4.7), it is clearly ad-

vantageous to select c(r,s) so that the curl operation leaves it intact.

If rectangular coordinates are selected, this is easily accomplished

for then the operator of Eq. (3.1) will clearly leave an exponential

function unchanged in form. Hence

c(r,s) - • " j r (114.6)

is selected, the composite index s being considered a vector. This

amounts to nothing more than choosing a Fourier transform to effect the

solution. The result of operating on c(rs) with the curl operator is

expressed by

curl c(r,s) - c(r,s)(-Ji) (11.7)

as follows from Eqs. (3.1) and (5.7). Hence,

$ d(u,r) curl c(r,s) - l(us)(-j ) (14.8)

and the imittance kernels are

z(u,s) W (-J/k),' A '(u,S) (-.9)

Y(Us) . (-jA),' 1 i(u,s) (i..io)
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The kernel Is therefore simply

K(u,s) _ (-/k2)e'ki'l 1(u,s) (14.U)

This kernel is of the ideal type, as in Eq. (12.2), with N(s)

- (-1/k2)e' 4I'lj. The resolvent for such kernels is given in Eq. (12.3).

In this case, letting

D(s) C l l (14.12)

the resolvent is
H(u,s;%) C (1 + (X/k2 )D(s) ]'-l1/k 2 )D(s) l(u,s)

or, since X = 1,

H(u,s;l) = - [k2 + D(s)]'ID(s) l(u,s) (14.13)

and the problem is solved.

The dispersion relation for this medium is given by Eq. (12.4),

which may be written in this case

det [k2 + D(s)] . 0 (14.14)

Alternatively, the ideal determinator p(s;%) may be obtained through the

recursion relations as an expansion in powers of X, which is unity.

What is obtained then is the same as the expansion of Eq. (14.14) by use

of Eqs. (9.6) and (9.4). The result is

6 + rlD(s) k4 + Tr 2D(s) k2 + Tr3D(s) - 0

or, since Tr3D(s) = det D(s) = 0 as a result of the fact that det - O,

k4 + Tr D(s) k2 + Tr2D(s) - 0 (14.15)

This is the dispersion relation for any infinite homogeneous medium.

From Eq. (14.6), s is clearly the propagation vector and the transforma-

tion is merely an expansion in plane waves. The normal modes are given

by the condition that V(s) be an eigenvector of the matrix D(s).
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This disposes of all infinite, homogeneous, linear media, be

they anisotropic, dispersive, lossy, with or without electric and mag-

netic current source distributions of any kind.

A specific example of a medium of this type which is of some

interest will illustrate the detailed matrix calculations required by

this formulation. Consider a medium which is gyrotropic, both in capac-

itivity and in permeability. The former type is realizable in a plasma,

the latter in a ferrite. If the preferred direction for both is the

z-axis, the constitutive tensors take the form

el J62 0 Il JP 0
m[ -JC2 ei j 1 "1 0] (14.16)

0 0 3 0 0o P

The explicit dispersion relation for this medium is desired. From Eq.

(14.15), this requires the calculation of the traces of D(s) - 1

A direct calculation involves considerable algebraic manipulation, much

of which is superfluous. By taking advantage of the structure of the

constitutive tensors and of the matrix J, the process is reducible to

elementary matrix manipulations, with a spectacular saving in labor, as

follows.

The structure of the constitutive dyadics invites a partition

of the matrices into transverse and longitudinal parts:

S -0l 
(14 17)

where Z and Y are 2 x 2 matrices. Defining the numerical matrix S as
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SS Li ] (114.18)

and noting the properties

G2  = -1 s +  -s (14.19)

where + here denotes the transpose of the matrix, the inner structure of

the partitions can be conveniently exhibited:

z eljC2S z- 3 y 1 .- J 2S - 113 (114.20)

It follows from Eq. (14.19) that the inverses partition with the same

structure:

S= zI + z2  Y y+y 2 S (14.21)

from which it is clear that Z and Y commute with each other and with S.

This simple observation in itself leads to a considerable saving in

labor.

The propagation vector s can also be partitioned into trans-

verse and longitudinal parts so that the structure of the A matrix may

also be revealeds8 : S oS](1.2
where b is a 2 x 1 column and c is a single element. Hence, D(s) is to

be obtained as a:ors o'][ Y 0 s -Sb
* [ D(s) I L ]~](14.23)

which will have the structure

ii,



D(s) , L, (14.24)

The traces of this matrix are expressible in terms of the par-

titions as

TrD(s) - d+TrD O  (lb.25)

Tr2 D(s) - detD +dr - d (14.26)

Even the calculation of det D in Eq. (14.26) can be avoided by recall-

ing that det D(s) is known to be zero:

det D(s) = 0 - d det D + d2SD+Sdl (14.27)

Hence, Tr2 D(s) can be expressed as

Tr2 D(s) = (-ld) d2 S D S d + d Tr Do - d2d, (14.28)

which involves nothing more difficult than matrix multiplication.

Now the partitions of D(s) are immediately obtainable from

Eq. (14.23):

D = c2ZSYS + ym~b+s - cZY + y-Zbb+S (14.29)0

d = zb+SYSb a -zb+Yb (14.30)

d -cZSY b = cZ. (14.31)

d2 = -zcb+SYS M zcbY (14.32)

where the commutation relations noted above and the properties of Eq.

(14.19) have been used to effect the simplifications. The slight labor

involved in evaluating Eqs. (14.25) and (14.28) can be reduced still

further by noting that b+Sb - 0 since S is antisymmetrc, that Tr S 0

and Tr 1 n 2, that the trace is a linear operator, and that matrices

J be cmumated in taking traces, as in Bq. (9.). Making use of Bq.
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(Ii.21), there is obtained, with little effort,

Tr D(s) = 2c 2(z2y 2-zlyl) - b2(zyl4z 1 )

D ~ 4 2 1f 2 2 2 41Tr2 D(s) - c ,2 j ) (z1+z2 ) + b zyzjy1 +

cP2 2, 2, 2 2
l yy(z4z- 2 ) + zz(y 1 Y)].

In these expressions, b = b+b is the square of the magnitude of the

transverse part of the propagation vector. The traces can easily be.

rewritten in terms of the elements of the constitutive tensors by noting

t 2  det Z i/det Zthat 2 .-l l/e, - e2) with a similar expression

involving Y.

Introducing these traces into Eq. (14.15) gives the dispersion

relation for the doubly gyrotropic medium. Its physical significance

becomes more apparent when it is written in terms of the magnitude, 0,

of the propagation vector s and of the angle, 0, between the direction

of propagation and the preferred direction in space.

2 2 c 2  c2  2 2 2 2 2= b c a 0 coso b - sin (14.35)

In terms of a refractive index n = P/k, the dispersion relation can be

written after a little rearrangement as

An 4  -Bn 2 +c - (11..3)

with the coefficients given by

A =( sin2. + , cos20) (tlsin2e + p cos2e) (14.37)

B = 2e 3g (e .+ 6292 )cos2 +

2 2 2 2[PJ3(el62) + Ce, (P-,2)J sin 9 (14.38)

3P3(C1 C2 (Pl'92) (.9

I



77

Eq. (i.36) is a quadratic in , which may readily be solved to yield

the refractive index in ary direction.

The homogeneity of the space makes this illustration a trivial

application of the theory, the full power and generality of which is only

barely in evidence in this example. Here the integrations were so ele-

mentary as to reduce the calculations to little more than simple algebra.

In general inhomogeneous media the quadratures may be inordinately numer-

ous and cuabersome but the mechanics of setting them up and combining

them to extract the desired results are much the same as in this simple

illustration.

i
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15. COCLUSIOMS

The formalism developed in this work attempts to provide a new

vantage point from which to view and attack a large class of problems in

electromagnetic theory. Concentrating on the invariable, characteristic

features of general linear media and subordinating their less signifi-

cant details, it unifies the approach to a wide variety of such media.,

to which the various standard, classical modes of attack have assigned a

variety of epithets -- inhomogeneous, anisotropic, etc. The method of

analysis reformulates Maxwell's equations, provides an alternate start-

ing point for the extraction of all significant information from a given

system. Recognizing that a full description of the medium must implic-

itly contain all the relevant information about the system, the formula-

tion seeks a direct route from an initial mathematical description of

the electrical constitution of the space to all the information about

the consequent phenomena which may be of interest and significance.

The present reformulation combines many disparate aria1ytical

techniques of great power -- those of partial differential equations, of

matrix algebra and calculus, of abstract linear operators, of general-

ized transforms, and of integral equations -- which may be brought to

bear upon the general problem. Acknowledging the self-defeating fea-

tures of seeking closed-form solutions for media with ary but the slm-

* plest structures, the formalism allows considerable freedom of choice of

the form in which the results are represented. Care has been taken to

preserve intact the informational content of Maxwell's equations 1n.

effecting the' traslation to the new lan~e.

' I I I I I I I I I I I I I I I I I I I I I i i
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Besides providing a single new equation of radically different

form to be analyzed for the solution of a problem, this work presents a

host of mathematical properties of this equation which may be used to

effect its solution or to derive qualitative features of the results.

The method is crowned by the prescription of an explicit sequence of

mathematical operations which, in principle, lead ultimately to the com-

plete solution for any given linear medium. This formal solution in.

cludes the fundamental existence condition characteristic of the mediu.n,

the complete set of normal modes for the system, the entire electromag-

netic field pattern in response to ary given distribution of electric

and magnetic current sources, and the power flow and energy distribution

accompanying the fields -- in short, all the information which is latent

in the description of the medium and excitations. In effect, there is

set up a fictive machine which incorporates the physical mechanism of

interaction of electromgnetic fields and sources, has as its input a

full pointwise description of the electrical content of the space, and

produces as its output all the desired results describing the phenomena

associated with the medium. Effectively, the formal solution unifies

and systematizes the analysis of a general class of problems in electro-

magnetic theory and reduces such problems to quadratures.

The objection may be raised, and a formidable one it may well

be, that the quadratures involved in the process are of such complexity

and m tiplicity asto be prohibitive. In the same vein, the criticism may

be made that the convergence of the expansions for the determinator and

characterizer may be so slow as to require an excessive number of terms

in .the series, with all the calculations which that entails. These
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objections may be palliated by noting that the series expansior method

is only one of many modes of attacking the resolvent equation and is

generally not the most efficient one. Furthermore, the complexity of

the computations depends on the choice of the basis of representation

for the results. All possible a priori knowledge of the form of the

solution should hence be brought to bear upon the choice of basis func-

tions. If some members of the complete set of expansion functions resem-

ble the functions to be expressed, the number of significant terms re-

quired in the expansions will be small, though possibly at the cost of

complicating the integrations and sumnations involved. In practice,

some compromise will be arrived at between rapidity of convergence and

complexity of calculations. The dominant role which can be played by

automatic computers in this connection should be noted.

Elaborations and refinements of the theory may take several

directions. The formalism could be expanded to handle rapidly time-

varying and nonstationary media in a unified way. In fact, a relativ-

istically invariant formulation could be developed by operating on four-

tensors instead of three-vectors. Although the equations governing such

cases are of a form quite different from that of the Maxwell equations

treated here, the basic ideas used in this work are evidently applicable

to any set of linear partial differential equations, whatever their

domain of definition. Toward the improvement of the efficiency of the

method, studies could be undertaken of means of estimating the remain-

ders of the series appearing in the resolvent when these are truncated,

of a decision procedure for optimizing the choice of the basis of

representation, and of general methods of iuroving the convergence of
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the serie representation of the results.

Valuable appliations of the theory may be made in the analy-

sis of various inhomogeneous and anisotropic media such as that of a.

plasma. Ultimately, this work may lead to successful attacks upon such

fundamental problems as the forlstion of the conditions for the appear-

once of certain wave phenomena and the development of synthesis proce-

dures for the Implementation of desired dispersion relations,

m m I I I I I II I I I II I I I •
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